
YOLOv10: Real-Time End-to-End Object Detection

Ao Wang1 Hui Chen2∗ Lihao Liu1 Kai Chen1

Zijia Lin1 Jungong Han3 Guiguang Ding1∗
1School of Software, Tsinghua University 2BNRist, Tsinghua University

3Department of Automation, Tsinghua University
wa22@mails.tsinghua.edu.cn huichen@mail.tsinghua.edu.cn linzijia07@tsinghua.org.cn

{louisliu2048,chenkai2010.9,jungonghan77}@gmail.com dinggg@tsinghua.edu.cn

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Latency (ms)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

C
O

C
O

 A
P

(%
) YOLOv6-v3.0

YOLOv7
YOLOv8
YOLOv9
PPYOLOE
RTMDet
YOLO-MS
Gold-YOLO
RT-DETR
YOLOv10 (Ours)

0 20 40 60 80 100
Number of Parameters (M)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

C
O

C
O

 A
P

(%
) YOLOv6-v3.0

YOLOv7
YOLOv8
YOLOv9
PPYOLOE
RTMDet
YOLO-MS
Gold-YOLO
RT-DETR
YOLOv10 (Ours)

Figure 1: Comparisons with others in terms of latency-accuracy (left) and size-accuracy (right)
trade-offs. We measure the end-to-end latency using the official pre-trained models.

Abstract

Over the past years, YOLOs have emerged as the predominant paradigm in the field
of real-time object detection owing to their effective balance between computa-
tional cost and detection performance. Researchers have explored the architectural
designs, optimization objectives, data augmentation strategies, and others for YO-
LOs, achieving notable progress. However, the reliance on the non-maximum
suppression (NMS) for post-processing hampers the end-to-end deployment of
YOLOs and adversely impacts the inference latency. Besides, the design of various
components in YOLOs lacks the comprehensive and thorough inspection, resulting
in noticeable computational redundancy and limiting the model’s capability. It ren-
ders the suboptimal efficiency, along with considerable potential for performance
improvements. In this work, we aim to further advance the performance-efficiency
boundary of YOLOs from both the post-processing and the model architecture. To
this end, we first present the consistent dual assignments for NMS-free training
of YOLOs, which brings the competitive performance and low inference latency
simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven
model design strategy for YOLOs. We comprehensively optimize various compo-
nents of YOLOs from both the efficiency and accuracy perspectives, which greatly
reduces the computational overhead and enhances the capability. The outcome
of our effort is a new generation of YOLO series for real-time end-to-end object
detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves
the state-of-the-art performance and efficiency across various model scales. For

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

40
5.

14
45

8v
2

 [
cs

.C
V

]
 3

0
O

ct
 2

02
4

example, our YOLOv10-S is 1.8× faster than RT-DETR-R18 under the simi-
lar AP on COCO, meanwhile enjoying 2.8× smaller number of parameters and
FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46% less latency and 25%
fewer parameters for the same performance. Code and models are available at
https://github.com/THU-MIG/yolov10.

1 Introduction

Real-time object detection has always been a focal point of research in the area of computer vision,
which aims to accurately predict the categories and positions of objects in an image under low
latency. It is widely adopted in various practical applications, including autonomous driving [3],
robot navigation [12], and object tracking [72], etc. In recent years, researchers have concentrated
on devising CNN-based object detectors to achieve real-time detection [19, 23, 48, 49, 50, 57,
13]. Among them, YOLOs have gained increasing popularity due to their adept balance between
performance and efficiency [2, 20, 29, 20, 21, 65, 60, 70, 8, 71, 17, 29]. The detection pipeline of
YOLOs consists of two parts: the model forward process and the NMS post-processing. However,
both of them still have deficiencies, resulting in suboptimal accuracy-latency boundaries.

Specifically, YOLOs usually employ one-to-many label assignment strategy during training, whereby
one ground-truth object corresponds to multiple positive samples. Despite yielding superior perfor-
mance, this approach necessitates NMS to select the best positive prediction during inference. This
slows down the inference speed and renders the performance sensitive to the hyperparameters of NMS,
thereby preventing YOLOs from achieving optimal end-to-end deployment [78]. One line to tackle
this issue is to adopt the recently introduced end-to-end DETR architectures [4, 81, 73, 30, 36, 42, 67].
For example, RT-DETR [78] presents an efficient hybrid encoder and uncertainty-minimal query
selection, propelling DETRs into the realm of real-time applications. Nevertheless, when considering
only the forward process of model during deployment, the efficiency of the DETRs still has room
for improvements compared with YOLOs. Another line is to explore end-to-end detection for CNN-
based detectors, which typically leverages one-to-one assignment strategies to suppress the redundant
predictions [6, 55, 66, 80, 17]. However, they usually introduce additional inference overhead or
achieve suboptimal performance for YOLOs.

Furthermore, the model architecture design remains a fundamental challenge for YOLOs, which
exhibits an important impact on the accuracy and speed [50, 17, 71, 8]. To achieve more efficient
and effective model architectures, researchers have explored different design strategies. Various
primary computational units are presented for the backbone to enhance the feature extraction ability,
including DarkNet [48, 49, 50], CSPNet [2], EfficientRep [29] and ELAN [62, 64], etc. For the neck,
PAN [37], BiC [29], GD [60] and RepGFPN [71], etc., are explored to enhance the multi-scale feature
fusion. Besides, model scaling strategies [62, 61] and re-parameterization [11, 29] techniques are also
investigated. While these efforts have achieved notable advancements, a comprehensive inspection for
various components in YOLOs from both the efficiency and accuracy perspectives is still lacking. As
a result, there still exists considerable computational redundancy within YOLOs, leading to inefficient
parameter utilization and suboptimal efficiency. Besides, the resulting constrained model capability
also leads to inferior performance, leaving ample room for accuracy improvements.

In this work, we aim to address these issues and further advance the accuracy-speed boundaries of
YOLOs. We target both the post-processing and the model architecture throughout the detection
pipeline. To this end, we first tackle the problem of redundant predictions in the post-processing
by presenting a consistent dual assignments strategy for NMS-free YOLOs with the dual label
assignments and consistent matching metric. It allows the model to enjoy rich and harmonious
supervision during training while eliminating the need for NMS during inference, leading to com-
petitive performance with high efficiency. Secondly, we propose the holistic efficiency-accuracy
driven model design strategy for the model architecture by performing the comprehensive inspection
for various components in YOLOs. For efficiency, we propose the lightweight classification head,
spatial-channel decoupled downsampling, and rank-guided block design, to reduce the manifested
computational redundancy and achieve more efficient architecture. For accuracy, we explore the
large-kernel convolution and present the effective partial self-attention module to enhance the model
capability, harnessing the potential for performance improvements under low cost.

2

https://github.com/THU-MIG/yolov10

Based on these approaches, we succeed in achieving a new family of real-time end-to-end detectors
with different model scales, i.e., YOLOv10-N / S / M / B / L / X. Extensive experiments on standard
benchmarks for object detection, i.e., COCO [35], demonstrate that our YOLOv10 can significantly
outperform previous state-of-the-art models in terms of computation-accuracy trade-offs across
various model scales. As shown in Fig. 1, our YOLOv10-S / X are 1.8× / 1.3× faster than RT-DETR-
R18 / R101, respectively, under the similar performance. Compared with YOLOv9-C, YOLOv10-B
achieves a 46% reduction in latency with the same performance. Moreover, YOLOv10 exhibits highly
efficient parameter utilization. Our YOLOv10-L / X outperforms YOLOv8-L / X by 0.3 AP and
0.5 AP, with 1.8× and 2.3× smaller number of parameters, respectively. YOLOv10-M achieves the
similar AP compared with YOLOv9-M / YOLO-MS, with 23% / 31% fewer parameters, respectively.
We hope that our work can inspire further studies and advancements in the field.

2 Related Work

Real-time object detectors. Real-time object detection aims to classify and locate objects under low
latency, which is crucial for real-world applications. Over the past years, substantial efforts have been
directed towards developing efficient detectors [19, 57, 48, 34, 79, 75, 32, 31, 41]. Particularly, the
YOLO series [48, 49, 50, 2, 20, 29, 62, 21, 65] stand out as the mainstream ones. YOLOv1, YOLOv2,
and YOLOv3 identify the typical detection architecture consisting of three parts, i.e., backbone, neck,
and head [48, 49, 50]. YOLOv4 [2] and YOLOv5 [20] introduce the CSPNet [63] design to replace
DarkNet [47], coupled with data augmentation strategies, enhanced PAN, and a greater variety of
model scales, etc. YOLOv6 [29] presents BiC and SimCSPSPPF for neck and backbone, respectively,
with anchor-aided training and self-distillation strategy. YOLOv7 [62] introduces E-ELAN for rich
gradient flow path and explores several trainable bag-of-freebies methods. YOLOv8 [21] presents C2f
building block for effective feature extraction and fusion. Gold-YOLO [60] provides the advanced
GD mechanism to boost the multi-scale feature fusion capability. YOLOv9 [65] proposes GELAN to
improve the architecture and PGI to augment the training process.

End-to-end object detectors. End-to-end object detection has emerged as a paradigm shift from
traditional pipelines, offering streamlined architectures [53]. DETR [4] introduces the transformer
architecture and adopts Hungarian loss to achieve one-to-one matching prediction, thereby eliminating
hand-crafted components and post-processing. Since then, various DETR variants have been proposed
to enhance its performance and efficiency [42, 67, 56, 30, 36, 28, 5, 77, 82]. Deformable-DETR [81]
leverages multi-scale deformable attention module to accelerate the convergence speed. DINO [73]
integrates contrastive denoising, mix query selection, and look forward twice scheme into DETRs.
RT-DETR [78] further designs the efficient hybrid encoder and proposes the uncertainty-minimal
query selection to improve both the accuracy and latency. Another line to achieve end-to-end object
detection is based CNN detectors. Learnable NMS [24] and relation networks [26] present another
network to remove duplicated predictions for detectors. OneNet [55] and DeFCN [66] propose one-
to-one matching strategies to enable end-to-end object detection with fully convolutional networks.
FCOSpss [80] introduces a positive sample selector to choose the optimal sample for prediction.

3 Methodology

3.1 Consistent Dual Assignments for NMS-free Training

During training, YOLOs [21, 65, 29, 70] usually leverage TAL [15] to allocate multiple positive sam-
ples for each instance. The adoption of one-to-many assignment yields plentiful supervisory signals,
facilitating the optimization and achieving superior performance. However, it necessitates YOLOs
to rely on the NMS post-processing, which causes the suboptimal inference efficiency for deploy-
ment. While previous works [55, 66, 80, 6] explore one-to-one matching to suppress the redundant
predictions, they usually introduce additional inference overhead or yield suboptimal performance.
In this work, we present a NMS-free training strategy for YOLOs with dual label assignments and
consistent matching metric, achieving both high efficiency and competitive performance.

Dual label assignments. Unlike one-to-many assignment, one-to-one matching assigns only one
prediction to each ground truth, avoiding the NMS post-processing. However, it leads to weak
supervision, which causes suboptimal accuracy and convergence speed [82]. Fortunately, this
deficiency can be compensated for by the one-to-many assignment [6]. To achieve this, we introduce

3

Backbone PAN

Regression

Classification

One-to-many Head

Dual Label Assignments Consistent Match. Metric

𝑚 = 𝑠 ⋅ 𝑝𝛼 ⋅ IoU 𝑏, 𝑏
𝛽

Regression

Classification

One-to-one Head

Input

(a) (b)

1

23

4

6

5

Figure 2: (a) Consistent dual assignments for NMS-free training. (b) Frequency of one-to-one
assignments in Top-1/5/10 of one-to-many results for YOLOv8-S which employs αo2m=0.5 and
βo2m=6 by default [21]. For consistency, αo2o=0.5; βo2o=6. For inconsistency, αo2o=0.5; βo2o =2.

dual label assignments for YOLOs to combine the best of both strategies. Specifically, as shown
in Fig. 2.(a), we incorporate another one-to-one head for YOLOs. It retains the identical structure
and adopts the same optimization objectives as the original one-to-many branch but leverages the
one-to-one matching to obtain label assignments. During training, two heads are jointly optimized
with the model, allowing the backbone and neck to enjoy the rich supervision provided by the one-
to-many assignment. During inference, we discard the one-to-many head and utilize the one-to-one
head to make predictions. This enables YOLOs for the end-to-end deployment without incurring any
additional inference cost. Besides, in the one-to-one matching, we adopt the top one selection, which
achieves the same performance as Hungarian matching [4] with less extra training time.

Consistent matching metric. During assignments, both one-to-one and one-to-many approaches
leverage a metric to quantitatively assess the level of concordance between predictions and instances.
To achieve prediction aware matching for both branches, we employ a uniform matching metric, i.e.,

m(α, β) = s · pα · IoU(b̂, b)β , (1)
where p is the classification score, b̂ and b denote the bounding box of prediction and instance,
respectively. s represents the spatial prior indicating whether the anchor point of prediction is within
the instance [21, 65, 29, 70]. α and β are two important hyperparameters that balance the impact
of the semantic prediction task and the location regression task. We denote the one-to-many and
one-to-one metrics as mo2m=m(αo2m, βo2m) and mo2o=m(αo2o, βo2o), respectively. These metrics
influence the label assignments and supervision information for the two heads.

In dual label assignments, the one-to-many branch provides much richer supervisory signals than
one-to-one branch. Intuitively, if we can harmonize the supervision of the one-to-one head with that
of one-to-many head, we can optimize the one-to-one head towards the direction of one-to-many
head’s optimization. As a result, the one-to-one head can provide improved quality of samples during
inference, leading to better performance. To this end, we first analyze the supervision gap between the
two heads. Due to the randomness during training, we initiate our examination in the beginning with
two heads initialized with the same values and producing the same predictions, i.e., one-to-one head
and one-to-many head generate the same p and IoU for each prediction-instance pair. We note that the
regression targets of two branches do not conflict, as matched predictions share the same targets and
unmatched predictions are ignored. The supervision gap thus lies in the different classification targets.
Given an instance, we denote its largest IoU with predictions as u∗, and the largest one-to-many and
one-to-one matching scores as m∗

o2m and m∗
o2o, respectively. Suppose that one-to-many branch yields

the positive samples Ω and one-to-one branch selects i-th prediction with the metric mo2o,i=m∗
o2o, we

can then derive the classification target to2m,j=u∗ · mo2m,j

m∗
o2m

≤ u∗ for j ∈ Ω and to2o,i=u∗ · mo2o,i

m∗
o2o

=u∗

for task aligned loss as in [21, 65, 29, 70, 15]. The supervision gap between two branches can thus
be derived by the 1-Wasserstein distance [46] of different classification objectives, i.e.,

A = to2o,i − I(i ∈ Ω)to2m,i +
∑

k∈Ω\{i}
to2m,k, (2)

We can observe that the gap decreases as to2m,i increases, i.e., i ranks higher within Ω. It reaches the
minimum when to2m,i=u∗, i.e., i is the best positive sample in Ω, as shown in Fig. 2.(a). To achieve
this, we present the consistent matching metric, i.e., αo2o=r ·αo2m and βo2o=r · βo2m, which implies
mo2o=mr

o2m. Therefore, the best positive sample for one-to-many head is also the best for one-to-one
head. Consequently, both heads can be optimized consistently and harmoniously. For simplicity, we

4

take r=1, by default, i.e., αo2o=αo2m and βo2o=βo2m. To verify the improved supervision alignment,
we count the number of one-to-one matching pairs within the top-1 / 5 / 10 of the one-to-many results
after training. As shown in Fig. 2.(b), the alignment is improved under the consistent matching metric.
For a more comprehensive understanding of the mathematical proof, please refer to the appendix.

Discussion with other counter-parts. Similarly, previous works [28, 5, 77, 54, 6, 82, 45] explore the
different assignments to accelerate the training convergence and improve the performance for different
networks. For example, H-DETR [28], Group-DETR [5], and MS-DETR [77] introduce one-to-many
matching in conjunction with the original one-to-one matching by hybrid or multiple group label
assignments, to improve upon DETR. Differently, to achieve the one-to-many matching, they usually
introduce extra queries or repeat ground truths for bipartite matching, or select top several queries
from the matching scores, while we adopt the prediction aware assignment that incorporates the
spatial prior. Besides, LRANet [54] employs the dense assignment and sparse assignment branches
for training, which all belong to the one-to-many assignment, while we adopt the one-to-many and
one-to-one branches. DEYO [45, 43, 44] investigates the step-by-step training with one-to-many
matching in the first stage for convolutional encoder and one-to-one matching in the second stage for
transformer decoder, while we avoid the transformer decoder for end-to-end inference. Compared
with works [6, 80] which incorporate dual assignments for CNN-based detectors, we further analyze
the supervision gap between the two heads and present the consistent matching metric for YOLOs to
reduce the theoretical supervision gap. It improves performance through better supervision alignment
and eliminates the need for hyper-parameter tuning.

3.2 Holistic Efficiency-Accuracy Driven Model Design

In addition to the post-processing, the model architectures of YOLOs also pose great challenges to the
efficiency-accuracy trade-offs [50, 8, 29]. Although previous works explore various design strategies,
the comprehensive inspection for various components in YOLOs is still lacking. Consequently, the
model architecture exhibits non-negligible computational redundancy and constrained capability,
which impedes its potential for achieving high efficiency and performance. Here, we aim to holistically
perform model designs for YOLOs from both efficiency and accuracy perspectives.

Efficiency driven model design. The components in YOLO consist of the stem, downsampling
layers, stages with basic building blocks, and the head. The stem incurs few computational cost and
we thus perform efficiency driven model design for other three parts.

(1) Lightweight classification head. The classification and regression heads usually share the same
architecture in YOLOs. However, they exhibit notable disparities in computational overhead. For
example, the FLOPs and parameter count of the classification head (5.95G/1.51M) are 2.5× and 2.4×
those of the regression head (2.34G/0.64M) in YOLOv8-S, respectively. However, after analyzing
the impact of classification error and the regression error (seeing Tab. 6), we find that the regression
head undertakes more significance for the performance of YOLOs. Consequently, we can reduce the
overhead of classification head without worrying about hurting the performance greatly. Therefore,
we simply adopt a lightweight architecture for the classification head, which consists of two depthwise
separable convolutions [25, 9] with the kernel size of 3×3 followed by a 1×1 convolution.

(2) Spatial-channel decoupled downsampling. YOLOs typically leverage regular 3×3 standard
convolutions with stride of 2, achieving spatial downsampling (from H ×W to H

2 × W
2) and channel

transformation (from C to 2C) simultaneously. This introduces non-negligible computational cost of
O(92HWC2) and parameter count of O(18C2). Instead, we propose to decouple the spatial reduction
and channel increase operations, enabling more efficient downsampling. Specifically, we firstly
leverage the pointwise convolution to modulate the channel dimension and then utilize the depthwise
convolution to perform spatial downsampling. This reduces the computational cost to O(2HWC2 +
9
2HWC) and the parameter count to O(2C2+18C). Meanwhile, it maximizes information retention
during downsampling, leading to competitive performance with latency reduction.

(3) Rank-guided block design. YOLOs usually employ the same basic building block for all stages [29,
65], e.g., the bottleneck block in YOLOv8 [21]. To thoroughly examine such homogeneous design for
YOLOs, we utilize the intrinsic rank [33, 16] to analyze the redundancy2 of each stage. Specifically,
we calculate the numerical rank of the last convolution in the last basic block in each stage, which
counts the number of singular values larger than a threshold. Fig. 3.(a) presents the results of

2A lower rank implies greater redundancy, while a higher rank signifies more condensed information.

5

1 × 1

C

× 𝑁
+

3 × 3 DW

1 × 1

3 × 3 DW

1 × 1

3 × 3 DW

Split

1 × 1

CIB

CIB

1 × 1
Split

C

MHSA

+

FFN

+

1 × 1

× 𝑁𝑝𝑠𝑎

(a) (b) (c)

Figure 3: (a) The intrinsic ranks across stages and models in YOLOv8. The stage in the backbone
and neck is numbered in the order of model forward process. The numerical rank r is normalized
to r/Co for y-axis and its threshold is set to λmax/2, by default, where Co denotes the number of
output channels and λmax is the largest singular value. It can be observed that deep stages and large
models exhibit lower intrinsic rank values. (b) The compact inverted block (CIB). (c) The partial
self-attention module (PSA).

YOLOv8, indicating that deep stages and large models are prone to exhibit more redundancy. This
observation suggests that simply applying the same block design for all stages is suboptimal for the
best capacity-efficiency trade-off. To tackle this, we propose a rank-guided block design scheme
which aims to decrease the complexity of stages that are shown to be redundant using compact
architecture design. We first present a compact inverted block (CIB) structure, which adopts the cheap
depthwise convolutions for spatial mixing and cost-effective pointwise convolutions for channel
mixing, as shown in Fig. 3.(b). It can serve as the efficient basic building block, e.g., embedded in the
ELAN structure [64, 21] (Fig. 3.(b)). Then, we advocate a rank-guided block allocation strategy to
achieve the best efficiency while maintaining competitive capacity. Specifically, given a model, we
sort its all stages based on their intrinsic ranks in ascending order. We further inspect the performance
variation of replacing the basic block in the leading stage with CIB. If there is no performance
degradation compared with the given model, we proceed with the replacement of the next stage and
halt the process otherwise. Consequently, we can implement adaptive compact block designs across
stages and model scales, achieving higher efficiency without compromising performance. Due to the
page limit, we provide the details of the algorithm in the appendix.

Accuracy driven model design. We further explore the large-kernel convolution and self-attention
for accuracy driven design, aiming to boost the performance under minimal cost.

(1) Large-kernel convolution. Employing large-kernel depthwise convolution is an effective way
to enlarge the receptive field and enhance the model’s capability [10, 40, 39]. However, simply
leveraging them in all stages may introduce contamination in shallow features used for detecting
small objects, while also introducing significant I/O overhead and latency in high-resolution stages [8].
Therefore, we propose to leverage the large-kernel depthwise convolutions in CIB within the deep
stages. Specifically, we increase the kernel size of the second 3×3 depthwise convolution in the CIB to
7×7, following [39]. Additionally, we employ the structural reparameterization technique [11, 10, 59]
to bring another 3×3 depthwise convolution branch to alleviate the optimization issue without
inference overhead. Furthermore, as the model size increases, its receptive field naturally expands,
with the benefit of using large-kernel convolutions diminishing. Therefore, we only adopt large-kernel
convolution for small model scales.

(2) Partial self-attention (PSA). Self-attention [58] is widely employed in various visual tasks due
to its remarkable global modeling capability [38, 14, 76]. However, it exhibits high computational
complexity and memory footprint. To address this, in light of the prevalent attention head redun-
dancy [69], we present an efficient partial self-attention (PSA) module design, as shown in Fig. 3.(c).
Specifically, we evenly partition the features across channels into two parts after the 1×1 convolution.
We only feed one part into the NPSA blocks comprised of multi-head self-attention module (MHSA)
and feed-forward network (FFN). Two parts are then concatenated and fused by a 1×1 convolution.
Besides, we follow [22] to assign the dimensions of the query and key to half of that of the value in
MHSA and replace the LayerNorm [1] with BatchNorm [27] for fast inference. Furthermore, PSA is
only placed after the Stage 4 with the lowest resolution, avoiding the excessive overhead from the

6

Table 1: Comparisons with state-of-the-arts. Latency is measured using official pre-trained models.
Latencyf denotes the latency in the forward process of model without post-processing. † means the
results of YOLOv10 with the original one-to-many training using NMS. All results below are without
the additional advanced training techniques like knowledge distillation or PGI for fair comparisons.

Model #Param.(M) FLOPs(G) APval(%) Latency(ms) Latencyf (ms)
YOLOv6-3.0-N [29] 4.7 11.4 37.0 2.69 1.76
Gold-YOLO-N [60] 5.6 12.1 39.6 2.92 1.82
YOLOv8-N [21] 3.2 8.7 37.3 6.16 1.77
YOLOv10-N (Ours) 2.3 6.7 38.5 / 39.5† 1.84 1.79
YOLOv6-3.0-S [29] 18.5 45.3 44.3 3.42 2.35
Gold-YOLO-S [60] 21.5 46.0 45.4 3.82 2.73
YOLO-MS-XS [8] 4.5 17.4 43.4 8.23 2.80
YOLO-MS-S [8] 8.1 31.2 46.2 10.12 4.83
YOLOv8-S [21] 11.2 28.6 44.9 7.07 2.33
YOLOv9-S [65] 7.1 26.4 46.7 - -
RT-DETR-R18 [78] 20.0 60.0 46.5 4.58 4.49
YOLOv10-S (Ours) 7.2 21.6 46.3 / 46.8† 2.49 2.39
YOLOv6-3.0-M [29] 34.9 85.8 49.1 5.63 4.56
Gold-YOLO-M [60] 41.3 87.5 49.8 6.38 5.45
YOLO-MS [8] 22.2 80.2 51.0 12.41 7.30
YOLOv8-M [21] 25.9 78.9 50.6 9.50 5.09
YOLOv9-M [65] 20.0 76.3 51.1 - -
RT-DETR-R34 [78] 31.0 92.0 48.9 6.32 6.21
RT-DETR-R50m [78] 36.0 100.0 51.3 6.90 6.84
YOLOv10-M (Ours) 15.4 59.1 51.1 / 51.3† 4.74 4.63
YOLOv6-3.0-L [29] 59.6 150.7 51.8 9.02 7.90
Gold-YOLO-L [60] 75.1 151.7 51.8 10.65 9.78
YOLOv9-C [65] 25.3 102.1 52.5 10.57 6.13
YOLOv10-B (Ours) 19.1 92.0 52.5 / 52.7† 5.74 5.67
YOLOv8-L [21] 43.7 165.2 52.9 12.39 8.06
RT-DETR-R50 [78] 42.0 136.0 53.1 9.20 9.07
YOLOv10-L (Ours) 24.4 120.3 53.2 / 53.4† 7.28 7.21
YOLOv8-X [21] 68.2 257.8 53.9 16.86 12.83
RT-DETR-R101 [78] 76.0 259.0 54.3 13.71 13.58
YOLOv10-X (Ours) 29.5 160.4 54.4 / 54.4† 10.70 10.60

quadratic computational complexity of self-attention. In this way, the global representation learning
ability can be incorporated into YOLOs with low computational costs, which well enhances the
model’s capability and leads to improved performance.

4 Experiments

4.1 Implementation Details

We select YOLOv8 [21] as our baseline model, due to its commendable latency-accuracy balance
and its availability in various model sizes. We employ the consistent dual assignments for NMS-free
training and perform holistic efficiency-accuracy driven model design based on it, which brings our
YOLOv10 models. YOLOv10 has the same variants as YOLOv8, i.e., N / S / M / L / X. Besides, we
derive a new variant YOLOv10-B, by simply increasing the width scale factor of YOLOv10-M. We
verify the proposed detector on COCO [35] under the same training-from-scratch setting [21, 65, 62].
Moreover, the latencies of all models are tested on T4 GPU with TensorRT FP16, following [78].

4.2 Comparison with state-of-the-arts

As shown in Tab. 1, our YOLOv10 achieves the state-of-the-art performance and end-to-end latency
across various model scales. We first compare YOLOv10 with our baseline models, i.e., YOLOv8.
On N / S / M / L / X five variants, our YOLOv10 achieves 1.2% / 1.4% / 0.5% / 0.3% / 0.5% AP
improvements, with 28% / 36% / 41% / 44% / 57% fewer parameters, 23% / 24% / 25% / 27% / 38%
less calculations, and 70% / 65% / 50% / 41% / 37% lower latencies. Compared with other YOLOs,

7

Table 2: Ablation study with YOLOv10-S and YOLOv10-M on COCO.

Model NMS-free. Efficiency. Accuracy. #Param.(M) FLOPs(G) APval(%) Latency(ms)
1

YOLOv10-S

11.2 28.6 44.9 7.07
2 ✓ 11.2 28.6 44.3 2.44
3 ✓ ✓ 6.2 20.8 44.5 2.31
4 ✓ ✓ ✓ 7.2 21.6 46.3 2.49
5

YOLOv10-M

25.9 78.9 50.6 9.50
6 ✓ 25.9 78.9 50.3 5.22
7 ✓ ✓ 14.1 58.1 50.4 4.57
8 ✓ ✓ ✓ 15.4 59.1 51.1 4.74

Table 3: Dual assign.

o2m o2o AP Latency
✓ 44.9 7.07

✓ 43.4 2.44
✓ ✓ 44.3 2.44

Table 4: Matching metric.

αo2o βo2o APval αo2o βo2o APval

0.5 2.0 42.7 0.25 3.0 44.3
0.5 4.0 44.2 0.25 6.0 43.5
0.5 6.0 44.3 1.0 6.0 43.9
0.5 8.0 44.0 1.0 12.0 44.3

Table 5: Efficiency. for YOLOv10-S/M.

Model #Param FLOPs APval Latency
1 base. 11.2/25.9 28.6/78.9 44.3/50.3 2.44/5.22
2 +cls. 9.9/23.2 23.5/67.7 44.2/50.2 2.39/5.07
3 +downs. 8.0/19.7 22.2/65.0 44.4/50.4 2.36/4.97
4 +block. 6.2/14.1 20.8/58.1 44.5/50.4 2.31/4.57

YOLOv10 also exhibits superior trade-offs between accuracy and computational cost. Specifically,
for lightweight and small models, YOLOv10-N / S outperforms YOLOv6-3.0-N / S by 1.5 AP and 2.0
AP, with 51% / 61% fewer parameters and 41% / 52% less computations, respectively. For medium
models, compared with YOLOv9-C / YOLO-MS, YOLOv10-B / M enjoys the 46% / 62% latency
reduction under the same or better performance, respectively. For large models, compared with
Gold-YOLO-L, our YOLOv10-L shows 68% fewer parameters and 32% lower latency, along with
a significant improvement of 1.4% AP. Furthermore, compared with RT-DETR, YOLOv10 obtains
significant performance and latency improvements. Notably, YOLOv10-S / X achieves 1.8× and
1.3× faster inference speed than RT-DETR-R18 / R101, respectively, under the similar performance.
These results well demonstrate the superiority of YOLOv10 as the real-time end-to-end detector.

We also compare YOLOv10 with other YOLOs using the original one-to-many training approach.
We consider the performance and the latency of model forward process (Latencyf) in this situation,
following [62, 21, 60]. As shown in Tab. 1, YOLOv10 also exhibits the state-of-the-art performance
and efficiency across different model scales, indicating the effectiveness of our architectural designs.

4.3 Model Analyses

Ablation study. We present the ablation results based on YOLOv10-S and YOLOv10-M in Tab. 2. It
can be observed that our NMS-free training with consistent dual assignments significantly reduces
the end-to-end latency of YOLOv10-S by 4.63ms, while maintaining competitive performance of
44.3% AP. Moreover, our efficiency driven model design leads to the reduction of 11.8 M parameters
and 20.8 GFlOPs, with a considerable latency reduction of 0.65ms for YOLOv10-M, well showing
its effectiveness. Furthermore, our accuracy driven model design achieves the notable improvements
of 1.8 AP and 0.7 AP for YOLOv10-S and YOLOv10-M, alone with only 0.18ms and 0.17ms latency
overhead, respectively, which well demonstrates its superiority.

Analyses for NMS-free training.
• Dual label assignments. We present dual label assignments for NMS-free YOLOs, which can

bring both rich supervision of one-to-many (o2m) branch during training and high efficiency of
one-to-one (o2o) branch during inference. We verify its benefit based on YOLOv8-S, i.e., #1 in
Tab. 2. Specifically, we introduce baselines for training with only o2m branch and only o2o branch,
respectively. As shown in Tab. 3, our dual label assignments achieve the best AP-latency trade-off.

• Consistent matching metric. We introduce consistent matching metric to make the one-to-one head
more harmonious with the one-to-many head. We verify its benefit based on YOLOv8-S, i.e., #1 in
Tab. 2, under different αo2o and βo2o. As shown in Tab. 4, the proposed consistent matching metric,
i.e., αo2o=r · αo2m and βo2o=r · βo2m, can achieve the optimal performance, where αo2m=0.5 and
βo2m=6.0 in the one-to-many head [21]. Such an improvement can be attributed to the reduction
of the supervision gap (Eq. (2)), which provides improved supervision alignment between two
branches. Moreover, the proposed consistent matching metric eliminates the need for exhaustive
hyper-parameter tuning, which is appealing in practical scenarios.

8

YOLOv10-N YOLOv10-S YOLOv10-M YOLOv10-B YOLOv10-L YOLOv10-X

0.2

0.3

0.4

Figure 4: The average cosine similarity of each anchor point’s extracted features with all others.

Table 6: cls. results.

base. +cls.
APval 44.3 44.2
APval

w/o c 59.9 59.9
APval

w/o r 64.5 64.2

Table 7: Results of d.s.

Model APval Latency
base. 43.7 2.33
ours 44.4 2.36

Table 8: Results of CIB.

Model APval Latency
IRB 43.7 2.30
IRB-DW 44.2 2.30
ours 44.5 2.31

Table 9: Rank-guided.

Stages with CIB APval

empty 44.4
8 44.5
8,4, 44.5
8,4,7 44.3

• Performance gap compared with one-to-many training. Although achieving superior end-to-end
performance under NMS-free training, we observe that there still exists the performance gap
compared with the original one-to-many training using NMS, as shown in Tab. 3 and Tab. 1.
Besides, we note that the gap diminishes as the model size increases. Therefore, we reasonably
concludes that such a gap can be attributed to the limitations in the model capability. Notably,
unlike the original one-to-many training using NMS, the NMS-free training necessitates more
discriminative features for one-to-one matching. In the case of the YOLOv10-N model, its limited
capacity results in extracted features that lack sufficient discriminability, leading to a more notable
performance gap of 1.0% AP. In contrast, the YOLOv10-X model, which possesses stronger
capability and more discriminative features, shows no performance gap between two training
strategies. In Fig. 4, we visualize the average cosine similarity of each anchor point’s extracted
features with those of all other anchor points on the COCO val set. We observe that as the model
size increases, the feature similarity between anchor points exhibits a downward trend, which
benefits the one-to-one matching. Based on this insight, we will explore approaches to further
reduce the gap and achieve higher end-to-end performance in the future work.

Analyses for efficiency driven model design. We conduct experiments to gradually incorporate the
efficiency driven design elements based on YOLOv10-S/M. Our baseline is the YOLOv10-S/M model
without efficiency-accuracy driven model design, i.e., #2/#6 in Tab. 2. As shown in Tab. 5, each design
component, including lightweight classification head, spatial-channel decoupled downsampling, and
rank-guided block design, contributes to the reduction of parameters count, FLOPs, and latency.
Importantly, these improvements are achieved while maintaining competitive performance.
• Lightweight classification head. We analyze the impact of category and localization errors of

predictions on the performance, based on the YOLOv10-S of #1 and #2 in Tab. 5, like [7].
Specifically, we match the predictions to the instances by the one-to-one assignment. Then,
we substitute the predicted category score with instance labels, resulting in APval

w/o c with no
classification errors. Similarly, we replace the predicted locations with those of instances, yielding
APval

w/o r with no regression errors. As shown in Tab. 6, APval
w/o r is much higher than APval

w/o c,
revealing that eliminating the regression errors achieves greater improvement. The performance
bottleneck thus lies more in the regression task. Therefore, adopting the lightweight classification
head can allow higher efficiency without compromising the performance.

• Spatial-channel decoupled downsampling. We decouple the downsampling operations for efficiency,
where the channel dimensions are first increased by pointwise convolution (PW) and the resolution
is then reduced by depthwise convolution (DW) for maximal information retention. We compare it
with the baseline way of spatial reduction by DW followed by channel modulation by PW, based
on the YOLOv10-S of #3 in Tab. 5. As shown in Tab. 7, our downsampling strategy achieves the
0.7% AP improvement by enjoying less information loss during downsampling.

• Compact inverted block (CIB). We introduce CIB as the compact basic building block. We verify its
effectiveness based on the YOLOv10-S of #4 in the Tab. 5. Specifically, we introduce the inverted
residual block [51] (IRB) as the baseline, which achieves the suboptimal 43.7% AP, as shown in
Tab. 8. We then append a 3×3 depthwise convolution (DW) after it, denoted as “IRB-DW”, which

9

Table 10: Accuracy. for S/M.

Model APval Latency
1 base. 44.5/50.4 2.31/4.57
2 +L.k. 44.9/- 2.34/-
3 +PSA 46.3/51.1 2.49/4.74

Table 11: L.k. results.

Model APval Latency
k.s.=5 44.7 2.32
k.s.=7 44.9 2.34
k.s.=9 44.9 2.37
w/o rep. 44.8 2.34

Table 12: L.k. usage.

w/o L.k. w/ L.k.
N 36.3 36.6
S 44.5 44.9
M 50.4 50.4

Table 13: PSA results.

Model APval Latency
PSA 46.3 2.49
Trans. 46.0 2.54
NPSA = 1 46.3 2.49
NPSA = 2 46.5 2.59

brings 0.5% AP improvement. Compared with “IRB-DW”, our CIB further achieves 0.3% AP
improvement by prepending another DW with minimal overhead, indicating its superiority.

• Rank-guided block design. We introduce the rank-guided block design to adaptively integrate
compact block design for improving the model efficiency. We verify its benefit based on the
YOLOv10-S of #3 in the Tab. 5. The stages sorted in ascending order based on the intrinsic ranks
are Stage 8-4-7-3-5-1-6-2, like in Fig. 3.(a). As shown in Tab. 9, when gradually replacing the
bottleneck block in each stage with the efficient CIB, we observe the performance degradation
starting from Stage 7. In the Stage 8 and 4 with lower intrinsic ranks and more redundancy, we can
thus adopt the efficient block design without compromising the performance. These results indicate
that rank-guided block design can serve as an effective strategy for higher model efficiency.

Analyses for accuracy driven model design. We present the results of gradually integrating the
accuracy driven design elements based on YOLOv10-S/M. Our baseline is the YOLOv10-S/M model
after incorporating efficiency driven design, i.e., #3/#7 in Tab. 2. As shown in Tab. 10, the adoption
of large-kernel convolution and PSA module leads to the considerable performance improvements
of 0.4% AP and 1.4% AP for YOLOv10-S under minimal latency increase of 0.03ms and 0.15ms,
respectively. Note that large-kernel convolution is not employed for YOLOv10-M (see Tab. 12).
• Large-kernel convolution. We first investigate the effect of different kernel sizes based on the

YOLOv10-S of #2 in Tab. 10. As shown in Tab. 11, the performance improves as the kernel size
increases and stagnates around the kernel size of 7×7, indicating the benefit of large perception field.
Besides, removing the reparameterization branch during training achieves 0.1% AP degradation,
showing its effectiveness for optimization. Moreover, we inspect the benefit of large-kernel
convolution across model scales based on YOLOv10-N / S / M. As shown in Tab. 12, it brings no
improvements for large models, i.e., YOLOv10-M, due to its inherent extensive receptive field. We
thus only adopt large-kernel convolutions for small models, i.e., YOLOv10-N / S.

• Partial self-attention (PSA). We introduce PSA to enhance the performance by incorporating the
global modeling ability under minimal cost. We first verify its effectiveness based on the YOLOv10-
S of #3 in Tab. 10. Specifically, we introduce the transformer block, i.e., MHSA followed by FFN,
as the baseline, denoted as “Trans.”. As shown in Tab. 13, compared with it, PSA brings 0.3% AP
improvement with 0.05ms latency reduction. The performance enhancement may be attributed to
the alleviation of optimization problem [68, 10] in self-attention, by mitigating the redundancy
in attention heads. Moreover, we investigate the impact of different NPSA. As shown in Tab. 13,
increasing NPSA to 2 obtains 0.2% AP improvement but with 0.1ms latency overhead. Therefore,
we set NPSA to 1, by default, to enhance the model capability while maintaining high efficiency.

5 Conclusion

In this paper, we target both the post-processing and model architecture throughout the detection
pipeline of YOLOs. For the post-processing, we propose the consistent dual assignments for NMS-
free training, achieving efficient end-to-end detection. For the model architecture, we introduce the
holistic efficiency-accuracy driven model design strategy, improving the performance-efficiency trade-
offs. These bring our YOLOv10, a new real-time end-to-end object detector. Extensive experiments
show that YOLOv10 achieves the state-of-the-art performance and latency compared with other
advanced detectors, well demonstrating its superiority.

6 Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 61925107,
62271281) and Beijing Natural Science Foundation (No. L223023).

10

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection, 2020.

[3] Daniel Bogdoll, Maximilian Nitsche, and J Marius Zöllner. Anomaly detection in autonomous
driving: A survey. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4488–4499, 2022.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[5] Qiang Chen, Xiaokang Chen, Jian Wang, Shan Zhang, Kun Yao, Haocheng Feng, Junyu Han,
Errui Ding, Gang Zeng, and Jingdong Wang. Group detr: Fast detr training with group-wise one-
to-many assignment. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6633–6642, 2023.

[6] Yiqun Chen, Qiang Chen, Qinghao Hu, and Jian Cheng. Date: Dual assignment for end-to-end
fully convolutional object detection. arXiv preprint arXiv:2211.13859, 2022.

[7] Yiqun Chen, Qiang Chen, Peize Sun, Shoufa Chen, Jingdong Wang, and Jian Cheng. Enhancing
your trained detrs with box refinement. arXiv preprint arXiv:2307.11828, 2023.

[8] Yuming Chen, Xinbin Yuan, Ruiqi Wu, Jiabao Wang, Qibin Hou, and Ming-Ming Cheng.
Yolo-ms: rethinking multi-scale representation learning for real-time object detection. arXiv
preprint arXiv:2308.05480, 2023.

[9] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258,
2017.

[10] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to
31x31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11963–11975, 2022.

[11] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.
Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 13733–13742, 2021.

[12] Douglas Henke Dos Reis, Daniel Welfer, Marco Antonio De Souza Leite Cuadros, and Daniel
Fernando Tello Gamarra. Mobile robot navigation using an object recognition software with
rgbd images and the yolo algorithm. Applied Artificial Intelligence, 33(14):1290–1305, 2019.

[13] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet:
Keypoint triplets for object detection. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 6569–6578, 2019.

[14] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[15] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned
one-stage object detection. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3490–3499. IEEE Computer Society, 2021.

[16] Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha.
Rank diminishing in deep neural networks. Advances in Neural Information Processing Systems,
35:33054–33065, 2022.

[17] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in
2021. arXiv preprint arXiv:2107.08430, 2021.

11

[18] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V
Le, and Barret Zoph. Simple copy-paste is a strong data augmentation method for instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2918–2928, 2021.

[19] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[20] Jocher Glenn. Yolov5 release v7.0. https: // github. com/ ultralytics/ yolov5/ tree/
v7. 0 , 2022.

[21] Jocher Glenn. Yolov8. https: // github. com/ ultralytics/ ultralytics/ tree/
main , 2023.

[22] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé
Jégou, and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 12259–
12269, 2021.

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[24] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4507–4515, 2017.

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[26] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3588–3597, 2018.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[28] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang,
and Han Hu. Detrs with hybrid matching. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 19702–19712, 2023.

[29] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke, Xiaoming
Xu, and Xiangxiang Chu. Yolov6 v3.0: A full-scale reloading. arXiv preprint arXiv:2301.05586,
2023.

[30] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13619–13627, 2022.

[31] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss
v2: Learning reliable localization quality estimation for dense object detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11632–11641,
2021.

[32] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang.
Generalized focal loss: Learning qualified and distributed bounding boxes for dense object
detection. Advances in Neural Information Processing Systems, 33:21002–21012, 2020.

[33] Ming Lin, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin. Neural architecture design
for gpu-efficient networks. arXiv preprint arXiv:2006.14090, 2020.

[34] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

12

https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/yolov5/tree/v7.0
https://github.com/ultralytics/ultralytics/tree/main
https://github.com/ultralytics/ultralytics/tree/main

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[36] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329,
2022.

[37] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for
instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8759–8768, 2018.

[38] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[39] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[40] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. Advances in neural information processing systems,
29, 2016.

[41] Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou, Yudong Wang, Yanyi Liu, Shilong
Zhang, and Kai Chen. Rtmdet: An empirical study of designing real-time object detectors.
arXiv preprint arXiv:2212.07784, 2022.

[42] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and
Jingdong Wang. Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 3651–3660, 2021.

[43] Haodong Ouyang. Deyov2: Rank feature with greedy matching for end-to-end object detection.
arXiv preprint arXiv:2306.09165, 2023.

[44] Haodong Ouyang. Deyov3: Detr with yolo for real-time object detection. arXiv preprint
arXiv:2309.11851, 2023.

[45] Haodong Ouyang. Deyo: Detr with yolo for end-to-end object detection. arXiv preprint
arXiv:2402.16370, 2024.

[46] Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review
of statistics and its application, 6:405–431, 2019.

[47] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/
darknet/, 2013–2016.

[48] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[49] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[50] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[52] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 8430–8439, 2019.

13

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[53] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people detection in
crowded scenes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2325–2333, 2016.

[54] Yuchen Su, Zhineng Chen, Zhiwen Shao, Yuning Du, Zhilong Ji, Jinfeng Bai, Yong Zhou,
and Yu-Gang Jiang. Lranet: Towards accurate and efficient scene text detection with low-rank
approximation network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 4979–4987, 2024.

[55] Peize Sun, Yi Jiang, Enze Xie, Wenqi Shao, Zehuan Yuan, Changhu Wang, and Ping Luo. What
makes for end-to-end object detection? In International Conference on Machine Learning,
pages 9934–9944. PMLR, 2021.

[56] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka,
Lei Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with
learnable proposals. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 14454–14463, 2021.

[57] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: A simple and strong anchor-free object
detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4):1922–1933,
2020.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[59] Ao Wang, Hui Chen, Zijia Lin, Hengjun Pu, and Guiguang Ding. Repvit: Revisiting mobile
cnn from vit perspective. arXiv preprint arXiv:2307.09283, 2023.

[60] Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, and Kai
Han. Gold-yolo: Efficient object detector via gather-and-distribute mechanism. Advances in
Neural Information Processing Systems, 36, 2024.

[61] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4: Scaling
cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and
pattern recognition, pages 13029–13038, 2021.

[62] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7464–7475, 2023.

[63] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and
I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages
390–391, 2020.

[64] Chien-Yao Wang, Hong-Yuan Mark Liao, and I-Hau Yeh. Designing network design strategies
through gradient path analysis. arXiv preprint arXiv:2211.04800, 2022.

[65] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to
learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024.

[66] Jianfeng Wang, Lin Song, Zeming Li, Hongbin Sun, Jian Sun, and Nanning Zheng. End-to-end
object detection with fully convolutional network. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 15849–15858, 2021.

[67] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun. Anchor detr: Query design for
transformer-based detector. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pages 2567–2575, 2022.

[68] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 22–31, 2021.

14

[69] Haiyang Xu, Zhichao Zhou, Dongliang He, Fu Li, and Jingdong Wang. Vision transformer with
attention map hallucination and ffn compaction. arXiv preprint arXiv:2306.10875, 2023.

[70] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang, Cheng Cui, Kaipeng Deng, Guanzhong
Wang, Qingqing Dang, Shengyu Wei, Yuning Du, et al. Pp-yoloe: An evolved version of yolo.
arXiv preprint arXiv:2203.16250, 2022.

[71] Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, and Xiuyu Sun. Damo-yolo:
A report on real-time object detection design. arXiv preprint arXiv:2211.15444, 2022.

[72] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Motr:
End-to-end multiple-object tracking with transformer. In European Conference on Computer
Vision, pages 659–675. Springer, 2022.

[73] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-
Yeung Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection.
arXiv preprint arXiv:2203.03605, 2022.

[74] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[75] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 9759–9768,
2020.

[76] Wenqiang Zhang, Zilong Huang, Guozhong Luo, Tao Chen, Xinggang Wang, Wenyu Liu,
Gang Yu, and Chunhua Shen. Topformer: Token pyramid transformer for mobile semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12083–12093, 2022.

[77] Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, and Jingdong
Wang. Ms-detr: Efficient detr training with mixed supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 17027–17036, 2024.

[78] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. arXiv preprint arXiv:2304.08069,
2023.

[79] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-iou
loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 12993–13000, 2020.

[80] Qiang Zhou and Chaohui Yu. Object detection made simpler by eliminating heuristic nms.
IEEE Transactions on Multimedia, 2023.

[81] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159,
2020.

[82] Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with collaborative hybrid assignments training.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 6748–6758,
2023.

15

A Appendix

A.1 Implementation Details

Following [21, 62, 65], all YOLOv10 models are trained from scratch using the SGD optimizer for
500 epochs. The SGD momentum and weight decay are set to 0.937 and 5×10−4, respectively. The
initial learning rate is 1×10−2 and it decays linearly to 1×10−4. For data augmentation, we adopt the
Mosaic [2, 20], Mixup [74] and copy-paste augmentation [18], etc., like [21, 65]. Tab. 14 presents the
detailed hyper-parameters. All models are trained on 8 NVIDIA 3090 GPUs. Besides, we increase
the width scale factor of YOLOv10-M to 1.0 to obtain YOLOv10-B. For PSA, we employ it after the
SPPF module [21] and adopt the expansion factor of 2 for FFN. For CIB, we also adopt the expansion
ratio of 2 for the inverted bottleneck block structure. Following [65, 62], we report the standard mean
average precision (AP) across different object scales and IoU thresholds on the COCO dataset [35].

Moreover, we follow [78] to establish the end-to-end speed benchmark. Since the execution time of
NMS is affected by the input, we thus measure the latency on the COCO val set with the batch size
of 1, like [78]. We adopt the same NMS hyperparameters used by the detectors during their validation.
The TensorRT efficientNMSPlugin is appended for post-processing and the I/O overhead is
omitted. We report the average latency across all images.

Table 14: Hyper-parameters of YOLOv10.

hyper-parameter YOLOv10-N/S/M/B/L/X

epochs 500
optimizer SGD

momentum 0.937
weight decay 5×10−4

warm-up epochs 3
warm-up momentum 0.8

warm-up bias learning rate 0.1
initial learning rate 10−2

final learning rate 10−4

learning rate schedule linear decay
box loss gain 7.5
class loss gain 0.5
DFL loss gain 1.5

HSV saturation augmentation 0.7
HSV value augmentation 0.4
HSV hue augmentation 0.015

translation augmentation 0.1
scale augmentation 0.5/0.5/0.9/0.9/0.9/0.9

mosaic augmentation 1.0
Mixup augmentation 0.0/0.0/0.1/0.1/0.15/0.15

copy-paste augmentation 0.0/0.0/0.1/0.1/0.3/0.3
close mosaic epochs 10

A.2 Details of Consistent Matching Metric

We provide the detailed derivation of consistent matching metric here.

As mentioned in the paper, we suppose that the one-to-many positive samples is Ω and the one-to-
one branch selects i-th prediction. We can then leverage the normalized metric [15] to obtain the
classification target for task alignment learning [21, 15, 65, 29, 70], i.e., to2m,j = u∗ · mo2m,j

m∗
o2m

≤ u∗

for j ∈ Ω and to2o,i = u∗ · mo2o,i

m∗
o2o

= u∗. We can thus derive the supervision gap between two
branches by the 1-Wasserstein distance [46] of the different classification targets, i.e.,

A = |(1− to2o,i)− (1− I(i ∈ Ω)to2m,i)|+
∑

k∈Ω\{i}
|1− (1− to2m,k)|

= |to2o,i − I(i ∈ Ω)to2m,i|+
∑

k∈Ω\{i}
to2m,k

= to2o,i − I(i ∈ Ω)to2m,i +
∑

k∈Ω\{i}
to2m,k,

(3)

16

where I(·) is the indicator function. We denote the classification targets of the predictions in Ω as
{t̂1, t̂2, ..., t̂|Ω|} in descending order, with t̂1 ≥ t̂2 ≥ ... ≥ t̂|Ω|. We can then replace to2o,i with u∗

and obtain:
A = u∗ − I(i ∈ Ω)to2m,i +

∑
k∈Ω\{i}

to2m,k

= u∗ +
∑

k∈Ω
to2m,k − 2 · I(i ∈ Ω)to2m,i

= u∗ +
∑|Ω|

k=1
t̂k − 2 · I(i ∈ Ω)to2m,i

(4)

We further discuss the supervision gap in two scenarios, i.e.,

1. Supposing i ̸∈ Ω, we can obtain:

A = u∗ +
∑|Ω|

k=1
t̂k (5)

2. Supposing i ∈ Ω, we denote to2m,i = t̂n and obtain:

A = u∗ +
∑|Ω|

k=1
t̂k − 2 · t̂n (6)

Due to t̂n ≥ 0, the second case can lead to smaller supervision gap. Besides, we can observe that A
decreases as t̂n increases, indicating that n decreases and the ranking of i within Ω improves. Due
to t̂n ≤ t̂1, A thus achieves the minimum when t̂n = t̂1, i.e., i is the best positive sample in Ω with
mo2m,i = m∗

o2m and to2m,i = u∗ · mo2m,i

m∗
o2m

= u∗.

Furthermore, we prove that we can achieve the minimized supervision gap by the consistent matching
metric. We suppose αo2m > 0 and βo2m > 0, which are common in [21, 65, 29, 15, 70]. Similarly,
we assume αo2o > 0 and βo2o > 0. We can obtain r1 = αo2o

αo2m
> 0 and r2 = βo2o

βo2m
> 0, and then

derive mo2o by
mo2o = s · pαo2o · IoU(b̂, b)βo2o

= s · pr1·αo2m · IoU(b̂, b)r2·βo2m

= s · (pαo2m · IoU(b̂, b)βo2m)r1 · IoU(b̂, b)(r2−r1)·βo2m

= mr1
o2m · IoU(b̂, b)(r2−r1)·βo2m

(7)

To achieve mo2m,i = m∗
o2m and mo2o,i = m∗

o2o, we can make mo2o monotonically increase with
mo2m by assigning (r2 − r1) = 0, i.e.,

mo2o = mr1
o2m · IoU(b̂, b)0·βo2m

= mr1
o2m

(8)

Supposing r1 = r2 = r, we can thus derive the consistent matching metric, i.e., αo2o = r · αo2m and
βo2o = r · βo2m. By simply taking r = 1, we obtain αo2o = αo2m and βo2o = βo2m.

A.3 Details of Rank-Guided Block Design

We present the details of the algorithm of rank-guided block design in Algo. 1. Besides, to calculate
the numerical rank of the convolution, we reshape its weight to the shape of (Co, K2×Ci), where Co

and Ci denote the number of output and input channels, and K means the kernel size, respectively.

A.4 Training Cost Analyses

In addition to the inference efficiency analyses, we also investigate the training cost of our YOLOv10
models. We compare with other YOLO variants and measure the training throughput on 8 NVIDIA
3090 GPUs using the official codebases. Tab. 15 presents the comparison results based on the medium
model scale. We observe that despite having 500 training epochs, YOLOv10 achieves a high training
throughput, making its training cost affordable. We also note that the one-to-many head in the
NMS-free training will introduce the extra overhead for YOLOv10. To investigate this, we measure
the training cost of YOLOv10 with only the one-to-one head, which is denoted as “YOLOv10-o2o”.
As shown in Tab. 15, YOLOv10-M results in a small increase in the training time over “YOLOv10-
M-o2o”, about 18s each epoch, which is affordable. To fairly verify the benefit of the one-to-many
head in NMS-free training, we also adopt longer 550 training epochs for “YOLOv10-M-o2o”, which

17

Algorithm 1: Rank-guided block design
Input: Intrinsic ranks R for all stages S; Original Network Θ; CIB θcib;
Output: New network Θ∗ with CIB for certain stages.

1 t← 0;
2 Θ0 ← Θ; Θ∗ ← Θ0;
3 ap0 ← AP(T(Θ0)) ; // T:training the network; AP:evaluating the AP performance.
4 while S ̸= ∅ do
5 st ← argmins∈S R;
6 Θt+1 ← Replace(Θt, θcib, st) ; // Replace the block in Stage st of Θt with CIB θcib.
7 apt+1 ← AP(T(Θt+1));
8 if apt+1 ≥ ap0 then
9 Θ∗ ← Θt+1; S ← S \ {st};

10 else
11 return Θ∗;
12 end
13 end
14 return Θ∗;

Table 15: Training cost analyses on 8 NVIDIA 3090 GPUs.

Model Epoch Speed (epoch/hour) Time (hour)

YOLOv6-3.0-M 300 7.2 41.7
YOLOv8-M 500 18.3 27.3
YOLOv9-M 500 12.3 40.7
Gold-YOLO-M 300 4.7 63.8
YOLO-MS 300 7.1 42.3
YOLOv10-M-o2o 500 18.8 26.7
YOLOv10-M 500 17.2 29.1

Table 16: Latency with NMS.

Model Latency

YOLOv10-N 6.19ms
YOLOv10-S 7.15ms
YOLOv10-M 9.03ms
YOLOv10-B 10.04ms
YOLOv10-L 11.52ms
YOLOv10-X 14.67ms

leads to a similar training time (29.3 vs. 29.1 hours) but still yields inferior performance (48.9% vs.
51.1% AP) compared with YOLOv10-M.

A.5 More Results on COCO

We measure the latency of YOLOv10 with the original one-to-many training using NMS and report
the results on COCO in Tab. 16. Besides, we report the detailed performance of YOLOv10, including
APval

50 and APval
75 at different IoU thresholds, as well as APval

small, APval
medium, and APval

large across
different scales, in Tab. 17. We also present the comparisons with more lightweight detectors,
including DAMO-YOLO [71], YOLOv7 [62], and DEYO [45], in Tab. 18. It shows that our
YOLOv10 also achieves superior performance and efficiency trade-offs. Additionally, in experiments,
we follow previous works [21, 65] to train the models for 500 epochs. We also conduct experiments
to train the models for 300 epochs and present the comparison results with YOLOv6 [29], Gold-
YOLO [60], and YOLO-MS [8] which adopt 300 epochs, in Tab. 19. We observe that our YOLOv10
also exhibits better performance and inference latency. We also note that despite trained for 500
epochs, YOLOv10 has less training cost compared with these models as presented in Tab. 15.

A.6 Inference Efficiency Comparison on CPU

We present the speed comparison results of YOLOv10 and others on CPU (Intel Xeon Skylake, IBRS)
using OpenVINO in Fig. 5. We observe that YOLOv10 also shows state-of-the-art trade-offs in terms
of performance and efficiency.

A.7 More Analyses for Holistic Efficiency-Accuracy Driven Model Design

We note that reducing the latency of YOLOv10-S (#2 in Tab. 2) is particularly challenging due to its
small model scale. However, as shown in Tab. 2, our efficiency driven model design still achieves a
5.3% reduction in latency without compromising performance. This provides substantial support for
the further accuracy driven model design. YOLOv10-S achieves a better latency-accuracy trade-off

18

Table 17: Detailed performance of YOLOv10 on COCO.

Model APval(%) APval
50 (%) APval

75 (%) APval
small(%) APval

medium(%) APval
large(%)

YOLOv10-N 38.5 53.8 41.7 18.9 42.4 54.6
YOLOv10-S 46.3 63.0 50.4 26.8 51.0 63.8
YOLOv10-M 51.1 68.1 55.8 33.8 56.5 67.0
YOLOv10-B 52.5 69.6 57.2 35.1 57.8 68.5
YOLOv10-L 53.2 70.1 58.1 35.8 58.5 69.4
YOLOv10-X 54.4 71.3 59.3 37.0 59.8 70.9

Table 18: Comparisons with more lightweight detectors.

Model #Param.(M) FLOPs(G) APval(%) Latency(ms)

DEYO-tiny [45] 4.0 8.0 37.6 2.01
YOLOv10-N 2.3 6.7 38.5 1.84
DAMO-YOLO-T [71] 8.5 18.1 42.0 2.21
DAMO-YOLO-S [71] 16.3 37.8 46.0 3.18
DEYO-S [45] 14.0 26.0 45.8 3.34
YOLOv10-S 7.2 21.6 46.3 2.49
DAMO-YOLO-M [71] 28.2 61.8 49.2 4.57
DAMO-YOLO-L [71] 42.1 97.3 50.8 6.48
DEYO-M [45] 33.0 78.0 50.7 7.14
YOLOv10-M 15.4 59.1 51.1 4.74
YOLOv7 [62] 36.9 104.7 51.2 17.03
YOLOv10-B 19.1 92.0 52.5 5.74
YOLOv7-X [62] 71.3 189.9 52.9 21.45
DEYO-L [45] 51.0 155.0 52.7 10.00
YOLOv10-L 24.4 120.3 53.2 7.28
DEYO-X [45] 78.0 242.0 53.7 15.38
YOLOv10-X 29.5 160.4 54.4 10.70

with our holistic efficiency-accuracy driven model design, showing a 2.0% AP improvement with only
0.05ms latency overhead. Besides, for YOLOv10-M (#6 in Tab. 2), which has a larger model scale
and more redundancy, our efficiency driven model design results in a considerable 12.5% latency
reduction, as shown in Tab. 2. When combined with accuracy driven model design, we observe a
notable 0.8% AP improvement for YOLOv10-M, along with a favorable latency reduction of 0.48ms.
These results well demonstrate the effectiveness of our design strategy across different model scales.

Table 19: Performance comparisons under 300 training epochs.

Model #Param.(M) FLOPs(G) APval(%) Latency(ms)

YOLOv6-3.0-N [29] 4.7 11.4 37.0 2.69
Gold-YOLO-N [60] 5.6 12.1 39.6 2.92
YOLOv10-N (Ours) 2.3 6.7 37.7 1.84
YOLOv6-3.0-S [29] 18.5 45.3 44.3 3.42
Gold-YOLO-S [60] 21.5 46.0 45.4 3.82
YOLO-MS-XS [8] 4.5 17.4 43.4 8.23
YOLOv10-S (Ours) 7.2 21.6 45.6 2.49
YOLOv6-3.0-M [29] 34.9 85.8 49.1 5.63
Gold-YOLO-M [60] 41.3 87.5 49.8 6.38
YOLOv10-M (Ours) 15.4 59.1 50.3 4.74
YOLOv6-3.0-L [29] 59.6 150.7 51.8 9.02
Gold-YOLO-L [60] 75.1 151.7 51.8 10.65
YOLO-MS [8] 22.2 80.2 51.0 12.41
YOLOv10-B (Ours) 19.1 92.0 51.6 5.74
YOLOv10-L (Ours) 24.4 120.3 52.4 7.28
YOLOv10-X (Ours) 29.5 160.4 53.6 10.70

19

100 200 300 400 500
Latency on CPU (ms)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

C
O

C
O

 A
P

(%
)

YOLOv6-v3.0
YOLOv8
YOLOv9
YOLO-MS
Gold-YOLO
RT-DETR
YOLOv10 (Ours)

Figure 5: Performance and efficiency comparisons on CPU.

Figure 6: Visualization results under complex and challenging scenarios.

A.8 Visualization Results

Fig. 6 presents the visualization results of our YOLOv10 in the complex and challenging scenarios. It
can be observed that YOLOv10 can achieve precise detection under various difficult conditions, such
as low light, rotation, etc. It also demonstrates a strong capability in detecting diverse and densely
packed objects, such as bottle, cup, and person. These results indicate its superior performance.

A.9 Contribution, Limitation, and Broader Impact

Contribution. In summary, our contributions are three folds as follows:

1. We present a novel consistent dual assignments strategy for NMS-free YOLOs. A dual label
assignments way is designed to provide rich supervision by one-to-many branch during training
and high efficiency by one-to-one branch during inference. Besides, to ensure the harmonious
supervision between two branches, we innovatively propose the consistent matching metric, which
can well reduce the theoretical supervision gap and lead to improved performance.

20

2. We propose a holistic efficiency-accuracy driven model design strategy for the model architecture
of YOLOs. We present novel lightweight classification head, spatial-channel decoupled down-
sampling, and rank-guided block design, which greatly reduce the computational redundancy and
achieve high efficiency. We further introduce the large-kernel convolution and innovative partial
self-attention module, which effectively enhance the performance under low cost.

3. Based on the above approaches, we introduce YOLOv10, a new real-time end-to-end object
detector. Extensive experiments demonstrate that our YOLOv10 achieves the state-of-the-art
performance and efficiency trade-offs compared with other advanced detectors.

Limitation. Due to the limited computational resources, we do not investigate the pretraining
of YOLOv10 on large-scale datasets, e.g., Objects365 [52]. Besides, although we can achieve
competitive end-to-end performance using the one-to-one head under NMS-free training, there still
exists a performance gap compared with the original one-to-many training using NMS, especially
noticeable in small models. For example, in YOLOv10-N and YOLOv10-S, the performance of
one-to-many training with NMS outperforms that of NMS-free training by 1.0% AP and 0.5% AP,
respectively. We will explore ways to further reduce the gap and achieve higher performance for
YOLOv10 in the future work.

Broader impact. The YOLOs can be widely applied in various real-world applications, including
medical image analyses and autonomous driving, etc. We hope that our YOLOv10 can assist in these
fields and improve the efficiency. However, we acknowledge the potential for malicious use of our
models. We will make every effort to prevent this.

21

	Introduction
	Related Work
	Methodology
	Consistent Dual Assignments for NMS-free Training
	Holistic Efficiency-Accuracy Driven Model Design

	Experiments
	Implementation Details
	Comparison with state-of-the-arts
	Model Analyses

	Conclusion
	Acknowledgments
	Appendix
	Implementation Details
	Details of Consistent Matching Metric
	Details of Rank-Guided Block Design
	Training Cost Analyses
	More Results on COCO
	Inference Efficiency Comparison on CPU
	More Analyses for Holistic Efficiency-Accuracy Driven Model Design
	Visualization Results
	Contribution, Limitation, and Broader Impact

